
www.ieaghg.org

CO2 Transport via Pipeline and Ship

Stanley Santos

IEA Greenhouse Gas R&D Programme Cheltenham, UK

CCOP – EPPM Workshop on CCS September 2012

CO2 Transport – Important Notes

- Technology is available and mature
 - For example: USA about 2000 miles of CO2 pipeline.
- Economic Consideration is the main driver on the choice of CO₂ transport technology options.
 - o Demand and Capacity Utilisation
 - o Economy of Scale
 - Flexibility of Ship transport
- Operating pressure and temperature defined by the chosen transport technology option.
- CO₂ processing could be an integral part of the CO₂ transport

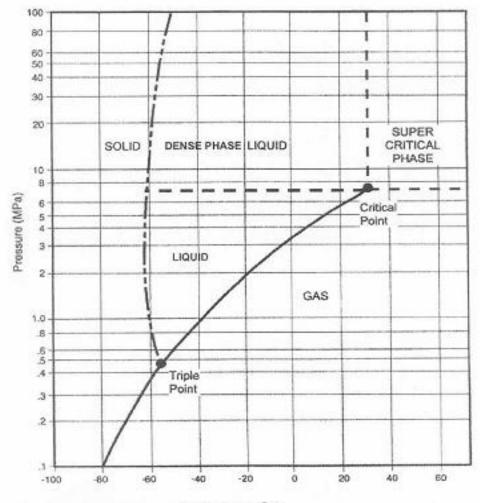
Pipeline Transport

CO₂ compression and pumping

- With or without booster station?
- Liquid, Gaseous or Dense Phase operation?
- CO₂ pipeline operation
 - CO₂ metering
 - Pipeline inspection

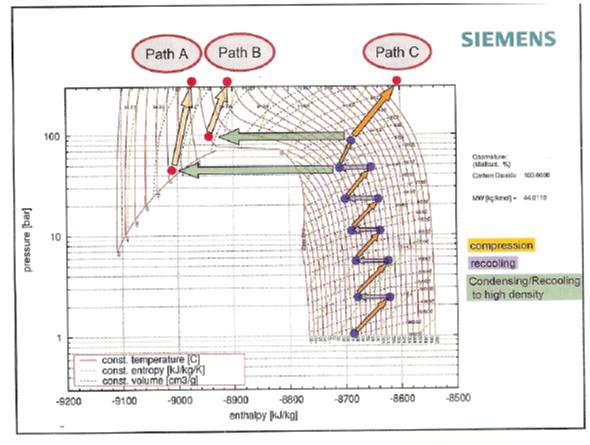
CO₂ health and safety

- Pipeline design safety consideration (i.e. Crack arrester)
- Corrosion issues
- Hydrate formation


CO₂ Compression

- CO₂ compression uses mature technologies typically found in large scale fertilizers manufacturing plant (ie. production of Urea).
- Similar compression technology is also used in natural gas pipeline transport worldwide.
- Centrifugal compressors are preferred for large volume applications.
- The main additional operating issues for CO₂ are avoiding corrosion and hydrate formation.

Phase Diagram of CO₂


Temperature (°C)

10

4

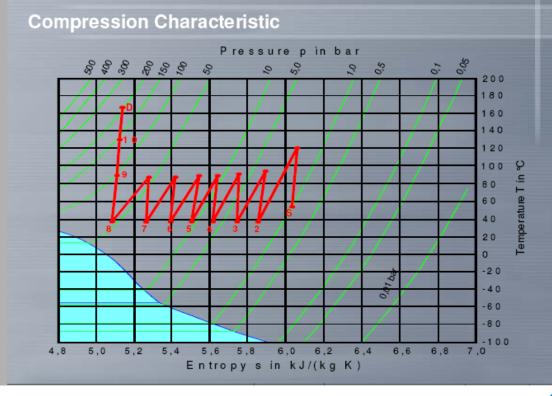
Enthalpy Diagram

Three main compression paths with a reference target pressure of 200 bar

11

11

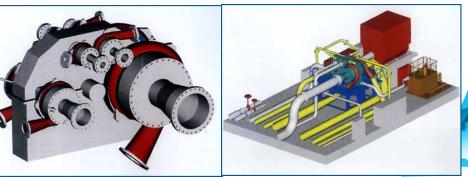
CO2 Compression in a Commercial



CO₂ COMPRESSION UPDATE T / S Diagram NOVAZOT UREA Plant

12

12


14

CO₂ Compression in a Commercial Operation (Dakota Gasification Plant – CO₂ to Weyburn EOR)

Operation Profile

- MAN Turbo RV 042/07
- Motor Driven (~19500 HP)
- Mass Flow: 125 000 kg/hr
- Inlet Pressure: 1 Bar
- Discharge Pressure: 190 Bar
- 2 units started operation in 2000 (each unit transporting ~55 mmSCFD)
- 3rd units started operation in June 2006

Pipeline Design

- Pipeline pressures: 10-20 MPa (existing pipelines)
- CO₂ is a "dense phase" fluid (about 0.8 t/m³)
- Moisture below 10 ppm level is now expected as a pre-requisite.
- Retrofit of existing Hydrocarbon or NG pipeline is possible.
- Special steels are not required

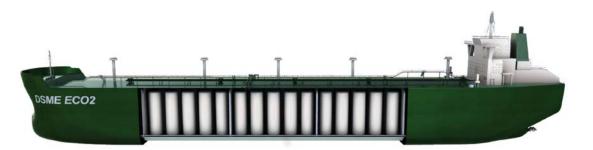
Operational Issues

- Contraction of the second seco
- Pipeline Inspection an important part of CO₂ transport operation which would require extensive review during design and implementation.
 - i.e. Pipeline Pigging Exercise
- CO₂ metering this is an important aspect to provide accountability between CO₂ capture and storage.
 - i.e. Orifice and venturi meters
- Start up and shut down
 - Drying procedure during start up
 - Depressurisation procedure during shut down

Pipeline Safety

- CO₂ is not flammable or explosive
- CO₂ is an asphyxiant and is heavier than air
- Leaking CO₂ may accumulate in low-lying places
- The number of incidents is similar for existing CO₂ and natural gas pipelines
- No deaths from CO₂ pipeline accidents
- Existing pipelines are mostly is sparsely populated regions
- Existing pipelines pass through some small built-up areas
- Further work is needed to assess potential hazards in some circumstances, e.g. for offshore EOR

Ship Transport


- Ship transport could make the economics consideration of CO₂ transport more flexible. (Mix and Match with pipeline transport)
- Transport of CO₂ by ship in smaller volume (i.e. <1500 m³) is currently practiced in the industry
- Shipping at lower pressure is preferred.
- However, operating at higher pressure should not be a major problem, as tankers currently used for shipping liquefied petroleum gas (LPG) can be used for CO2

CO₂ Ships Transport

CO₂ is transported for the food, drink and chemical industries Coral Carbonic 1250 m³ CO₂

Larger ships would be needed for CCS

Daewoo's proposed 100k m³ CO₂ ship

River barge transport

- Barges have been used to transport liquefied gases for many decades
- Barges may have cost and regulatory advantages over CO₂ pipelines in some circumstances

Thank you

- Email:
- Website:

stanley.santos@ieaghg.org http://www.ieaghg.org